

Darstellung, Kristallstruktur und Schwingungsspektrum von [BMP]₂[P₂S₆]

Einleitung

Ionische Flüssigkeiten sind nach einer allgemeinen Definition Salze mit einem niedrigen Schmelzpunkt (<100°C). Weiterhin verfügen sie über einen kaum

Tab. 1: Kristallographische Daten für [BMP]₂[P₂S₆].

Kristallsystem	orthorhombisch
Raumgruppe	<i>Pbca</i> (Nr. 61)
Z	8
a [Å]	14,23(2)
b [Å]	13,96(1)
c [Å]	13,68(2)
V _{EZ} [Å ³]	2771,3(2)
unabhängige Reflexe	5622
R _{int.}	0,1032
Daten / Parameter	2444 /277
Goodness-of-fit on F ²	1,110
R-Werte [<i>I</i> > 2 <i>σ</i> (<i>I</i>)]	<i>R</i> 1 = 0,0837
	wR2 = 0,1373
R-Werte (alle Daten)	<i>R</i> 1 = 0,1214
	<i>wR</i> 2 = 0,1608

messbaren Dampfdruck, außergewöhnliche Lösungsmitteleigenschaften und Hydrolysestabilität [1-2]. Diese neue Klasse von Verbindungen erfährt derzeit steigendes Interesse in vielen Bereichen der Wissenschaft und Technologie. Besonders interessant ist ihr Einsatz als Katalysator in organischer [3] und organometallischer [4-5] Synthese, Polymerisation [6-7] und als Medium für physikalische und analytische Chemie [8-9]. Einkristalle von [BMP]₂[P₂S₆] sind ein Beispiel dafür, inwieweit die Verbindungsbildung in Ionischen Flüssigkeiten durch das Kation gesteuert werden kann.

Abb. 1 Ausschnitt aus der Kristallstruktur von [BMP]₂[P₂S₆] entlang [100].

Experimentelles

Natriumhexathiodiphosphat(V), Na₂[P₂S₆], wurde unter inerten Bedingungen zunächst fein zermahlen und dann in eine Schlenkapparatur gegeben. Anschließend wurde 1-Butyl-1-methylpyrrolidiniumtrifluoromethansulfonat, [BMP][CF₃SO₃], zugefügt. Das Reaktionsgemisch wurde auf 350 °C erhitzt, bis eine klare gelbliche Lösung entstand. Nach einer Woche kristallisierten bei Raumtemperatur gelbe würfelförmige Kristalle von Bis(1-butyl-1-methylpyrrolidinium)hexathiodiphosphat(V) aus.

Röntgenografische Untersuchung

Ein geeigneter [BMP]₂[P₂S₆]-Einkristall wurde in eine Glaskapillare überführt und für die Aufnahme eines Intensitätsdatensatzes mit einem Einkristalldiffraktometer (STOE IPDS II) bei -50 C verwendet. Die

Strukturauflösung erfolgte über direkte Methoden (SHELXS), die Strukturverfeinerung (SHELXL) konvergierte in der Raumgruppe Pbca (Nr. 61). Die kristallographischen Daten sind in Tabelle 1 dargestellt.

Strukturbeschreibung

 $[BMP]_2[P_2S_6]$ kristallisiert in der orthorhombischen Raumgruppe *Pbca* mit acht Formeleinheiten pro Elementarzelle. Die Kristallstruktur besteht aus diskreten 1-Butyl-1-methylpyrrolidinium-Kationen und Hexathiodiphosphat(V)-Anionen, die in Schichten alternierend angeordnet sind (Abb. 1 und Tab. 1). Das N-Alkylpyrrolidinium-Kation ist nicht planar und über zwei Positionen fehlgeordnet (im C(4)-Atom des Ringes und in C(9), C(10) der Butylkette) (Abb. 2). Der $[BMP]^+$ -Ring besitzt mit vier Atomen in einer Ebene und einem weit herausragenden Atom eine Briefumschlag-Konformation (Torsionwinkel: C(3)–C(2)–N(1)–C(7) 114,85° und C(3)–C(2)–N(1)–C(7) 134,81°). Der Butylrest ist in *trans*-Stellung zum Ring angeordnet (Abb. 2). Es wurden keine Wasserstoffbrücken zwischen $[P_2S_6]^{2^-}$ -Anionen und Pyrrolidin-Kationen gefunden. Die Phosphoratome im $[P_2S_6]^{2^-}$ -Ion sind von vier Schwefelatomen verzerrt tetraedrisch umgeben. Jeweils zwei solche PS₄-Tetraeder sind über eine gemeinsame Kante zu zweikernigen $[P_2S_6]^{2^-}$ -Anionen verknüpft mit P–S-Bindungsabständen von 1,956 bis 2,144 Å und P–S-Bindungswinkel von 111,2 bis 117,3 °.

Abb. 2 *Envelope*-Konformation von $[BMP]_2[P_2S_6]$.

Schwingungsspektroskopische Untersuchungen

Die Mehrzahl der C–H-, C–N- und C–C-Valenz- und Deformationsschwingungen sind in höheren Wellenzahlenbereichen zu erwarten. Durch den direkten Vergleich der $[BMP]_2[P_2S_6]$ -Verbindung mit dem Hexathiodiphosphat(V) ergibt sich die Möglichkeit eines vereinfachten Modells für die Schwingungsanalyse. In der Verbindung liegen somit diskrete $[P_2S_6]^{2-}$ Ionen mit D_{2h}–Symmetrie als schwingungsspektroskopisch relevante Baueinheiten vor. Das dazugehörige Raman- und IR-Spektrum ist in Abbildung 3 dargestellt.

Literatur

[1] P. Wasserscheid, W. Keim, Angew. Chemie, Int. Ed. Engl. <u>39</u> (2000) 3773.

Abb. 3 Raumtemperatur FT-Raman-(a // $\lambda_{exc.}$ = 1064 nm) und FT-IR-Spektren (b) des [P₂S₆]^{2–}-Anions im kristallinen [BMP]₂[P₂S₆], (Raman, intensity in arbitrary units; IR, Transmittance). [2] P. Wasserscheid, T. Welton, *Ionic Liquids in Synthesis*, Wiley-VCH Verlag, Weinheim, 2003.

[3] R. Sheldon, *Chem. Commun.* (**2001**) 2399.

[4] M. Hasan, I. V. Kozhevnikov, M. R. H. Siddiqui, C. Femoni, A. Steiner, N. Winterton, Inorg. Chem. <u>40</u> (2001) 795.

[5] D. Crofts, P. J. Dyson, K. M. Sanderson, N. Srinivasan, T. Welton, J. Organomet. Chem. <u>573</u> (1999) 292.

[6] R. T. Carlin, J. S. Wilkes, *J. Mol. Catal.* <u>63</u> (**1990**) 125.

[7] A. Noda, M. Watanabe, *Electrochim. Acta* <u>45</u> (**2000**) 1265.

[8] A. Berthod, S. Canda-Broch, J. Liq. Chromatogr. Relat. Technol. 26 (2003) 1493.

[9] G. A. Baker, Sh. N. Baker, S. Pandey, F. A. Bright, *Analyst* <u>130</u> (2005) 800.

Tatjana Artys und Mimoza Gjikaj

Institut für Anorganische und Analytische Chemie der Technischen Universität Clausthal Paul-Ernst-Strasse 4 • 38678 Clausthal-Zellerfeld