Structure Elucidation of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)_{3}\right]$

Introduction

A green solution of tricarbonatocobaltate(III) reacts with hexaamminecobalt(III)-chloride to hexaamminecobalt(III) tricarbonatocobaltate(III) [1]. Compounds with the $\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)_{3}\right]$-anion are often used as an analytical titrant and as an oxidant in organic chemistry [2]. This compound is usually a very weak oxidant but when added to an acid solution the $\mathrm{Co}(\mathrm{III})$ - generated from $\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)_{3}\right]^{3-}-$ becomes a very strong oxidant. It is capable of reacting quantitatively with iron(II), vanadium(IV), cerium(III) and other reducing agents. Nevertheless, no x-ray single crystal data of the title compound are published, except [3].
The preparation of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)_{3}\right]\right.$ succeeded in different ways $[1,4]$. The structure solution of this compound can be obtained in the monoclinic space group $P 2_{1} / c(\mathrm{No}$. 14) with the cell parameters $a=17.826(1), b=$ $10.551(1), c=13,748(1) \AA, \beta=104.56(1)^{\circ}, V_{E Z}=2502.7(3) \AA^{3}$ and $Z=8$.

Experimental

The title compound was prepared by adding a solution of cobalt nitrate hexahydrate to a cold potassium hydrogen carbonate solution. By adding $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and hydrogen peroxide the solution turned green. After ice cooling for one hour cobalt hexaamminechloride $\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6} \mathrm{Cl}{ }_{3}$ was added. The solution was allowed to stand at $6^{\circ} \mathrm{C}$. Green block shaped crystals appeared within several days.
The structure was verified by X-ray structure analysis and infrared spectroscopy.

Structure description

Hexaamminecobalt(III) tricarbonatocobaltate(III) crystallizes in the monoclinic space group $P 2_{1} / C$ (No. 14) with four formula units per unit cell and cell parameters $a=17.826(1) \AA, b=10.551(1) \AA, c=13.748(1) \AA, \beta=104.56(1)^{\circ}$ and $V=2502.7(3) \AA$ (Tab. 1)
The crystal structure consists of four crystallographically different cobalt ions. Two cobalt ions are chelated by three carbonato groups each which are forming the anionic units $\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)_{3}\right]^{3-}$. The other two cobalt ions show a coordination sphere by six ammonia molecules each according to the cationic unit $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$. The NH_{3}-groups are involved in a hydrogen bonding network towards oxygen atoms of the carbonato groups. The corresponding bond lengths and angles are presented in the Table 2.
In Figure 1 the octahedral coordination spheres of Co 2 and $\mathrm{Co3}$ are shown. Those two octahedrons are connected via hydrogen bonds. The $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ bond lengths are in the ranges of $2.8964-3.0280 \AA$ and angles of $171.49-172.65^{\circ}$. Figure 2 shows the hydrogen bonds between Co1 and Co4 These two cobalt octahedrons are separated in the crystal structure. Only the hydrogen bond N8-H8A $\cdots \mathrm{O}^{\prime} 8^{\mathrm{i}}$ connects them with a range of $3.070 \AA$.

References

[1] G. Wangila, R. B. Jordan, Inorganica Chimica Acta, 2003, 343, 347
[2] a) J. A. Baur, C. E. Bricker, Analytical Chemistry, 1965, 37 (12), 1461. b) M. Vasatova, J. Zyka, Microchemical Journal, 1977, 22, 34. c) M. F. M. El Ghandour, A. Abd El Razek, Microchemical Journal, 1984, 30, 201.
[3] S. Taghipourian, A. Adam, Z. Kristallogr. Suppl. Issue, 2003, 20, 155:
[4] T. P. McCutcheon, W. J. Schuele, J. Amer. Chem. Soc., 1953, 75, 1845.

Infrared spectrum

Fig. 3 Infrared spectrum of $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)_{3}\right]$.

Crystal system	monoclinic
Space group / Z	$P 2 / 1 /($ No. 14) / 8
$a[A ̊]$	17.826(1)
$b[A ̊]$	10.551(1)
$c[A ̊]$	13.748(1)
$\beta[]$	104.56(1)
Volume [$\left.{ }^{3}{ }^{3}\right]$	2502.7(3)
$D_{\text {calc }}\left[\mathrm{g} \cdot \mathrm{cm}^{-3}\right]$	3.160
Measurement device	STOE IPDS II
$\mu\left(\mathrm{MoK}_{\mathrm{a}}\right)\left[\mathrm{mm}^{-1}\right]$	2.709
$F(000)$	1632
T [K$]$	223(2)
Crystal size [mm^{3}]	$0.26 \times 0.22 \times 0.24$
$\Theta_{\text {min, max }}{ }^{\text {[}}$]	1.00-26.37
$h_{\text {min }}, h_{\text {max }}, k_{\text {min }}, k_{\text {max }}, I_{\text {min }}, I_{\text {max }}$	-21, 22, -13, 13, -17, 16
Total number of reflections	39086
Data / parameters	5082 / 493
Goodness-of-Fit	1.167
R indeces [$1>2 \sigma(1)]$	$R 1=0.0433 ; w R 2=0.0948$
R indeces (all data)	$R 1=0.0591 ; w R 2=0.0996$
Largest diff. peak and hole [e $\AA{ }^{3}$]	0.673/-0.714

Tab. 2 Bond lengths [Å] and angles [$\left.{ }^{\circ}\right]$ for $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]\left[\mathrm{Co}\left(\mathrm{CO}_{3}\right)_{3}\right]$
Coordination of Cobalt
Co1-N(3,5,6,8,11,12)
1.945(4) - 1.976(4)
$\mathrm{Co} 2-\mathrm{N}(1,2,4,7,9,10) \quad 1.942(4)-1.975(4)$
$\mathrm{Co3}-\mathrm{O}(1,3,5,8,10,11) \quad 1.904(3)-1.924(3)$
Co4-O(2,4,6,7,9,12) 1.907(3)-1.929(3)
Carbonate Groups
$\mathrm{C} 1-\mathrm{O}_{\text {(double bond character) }} \quad 1.230(6)-1.244(5)$
C 1 - $\mathrm{O}_{\text {(single bond character) }} \quad 1.302(5)-1.323(6)$

Hydrogen bonds

$\mathrm{N} 2-\mathrm{H} 2 \mathrm{C} \cdots \mathrm{O}_{11} \mathrm{iii} \quad 3.028 \quad \angle$
$\mathrm{N} 4-\mathrm{H} 4 \mathrm{C} \cdots \mathrm{O} 3.896 \quad \angle \quad 171.49$
N7-H7A $\cdots 13$ iii $\quad 2.930 \quad \angle 171.77$

$\mathrm{N} 8-\mathrm{H} 8 \mathrm{~A} \cdots \mathrm{O} 18$	3.070	$\angle \quad 148.00$

Symmetry codes: i) $-x, y+0,5,-z+0,5$; ii) $-x, y-0,5,-z+0,5 ;$ iii) $-x+1$, $y-0,5,-z+0,5$.

In Figure 3 the infrared spectrum is shown. It is recorded by a Bruker IFS 66V using a Csl pellet.
In the range of $3600-3000 \mathrm{~cm}^{-1}$ the stretching bonds of $\mathrm{N}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ (due to intermolecular H -bonds) can be observed. The carbonate ions show the stretching bands at 1588, 1324, 1284 and $1033 \mathrm{~cm}^{-1}$ and the related deformation bands of the coordinated $\mathrm{CO}_{3}{ }^{2-}$ goup in the range of $899-677 \mathrm{~cm}^{-1}$.
The double bands at 488 and 466 respectively 344 and $327 \mathrm{~cm}^{-1}$ are referring to the cobalt coordination spheres ($\mathrm{Co}-\mathrm{N}$) and (Co-O).

Friederike Hinrichs, Niels-Patrick Pook

